Les inscriptions sont closes
  • Fin d'inscription
  • Inscription close
  • Début du Cours
  • 14 jan 2015
  • Fin du cours
  • 05 mar 2015
  • Effort estimé
  • 04:00 h/semaine
  • Langue
  • Français

Par rapport à ce cours

Le big data offre de nouvelles opportunités d’emplois au sein des entreprises et des administrations. De nombreuses formations préparant à ces opportunités de métiers existent. Le suivi de ces formations nécessite des connaissances de base en statistiques et en informatique que ce MOOC vous propose d’acquérir dans les domaines de l’analyse, algèbre, probabilités, statistiques, programmation Python et bases de données.

D’une part, les bases de données relationnelles ne sont pas toujours adaptées aux systèmes de données massives qui sont déployées dans les contextes big data ; ce MOOC vous explique pourquoi.

D’autre part, le langage Python est un langage très utilisé dans le domaine du traitement des masses de données. Ce cours vous initie à la programmation avec ce langage, particulièrement en utilisant la bibliothèque Numpy.

Enfin, le traitement des données massives et la prédiction nécessitent des analyses statistiques. Cette formation vous fournit les concepts élémentaires en statistiques tels que les variables aléatoires, le calcul différentiel, les fonctions convexes, les problèmes d'optimisation et les modèles de régression. Ces bases sont appliquées sur un algorithme de classification le Perceptron.

Cette formation est précédée d’un quiz de validation de niveau. Elle est constituée de 7 parties :

  • Programmation Python,
  • Limites des bases de données relationnelles,
  • Algèbre,
  • Analyse,
  • Probabilités,
  • Statistiques
  • et un exemple de classifieur, le Perceptron.

Elle est organisée en 6 semaines, chaque partie se termine par un quiz validant les acquis des différentes sessions vidéos. Un quiz final faisant suite à un projet validera l’ensemble du MOOC.

Public ciblé

Ce MOOC s'adresse à un public ayant des bases en mathématiques et en algorithmique (niveau L2 validé) nécessitant un rafraichissement de ces connaissances pour suivre des formations en data science et big data. Il peut être suivi en préparation du Mastère Spécialisé « Big data : Gestion et analyse des données massives », du Certificat d’Etudes Spécialisées « Data Scientist » et de la formation courte « Data Science : Introduction au Machine Learning » .

L'équipe

Course Staff Image #2

Stéphan Clémençon

Professeur au département Traitement du Signal et de l'Image de Télécom ParisTech. Ses recherches portent sur la théorie statistique de l'apprentissage. Il a récemment encadré des projets de recherche nationaux théoriques et appliqués sur ce thème. Il est responsable du Mastère Spécialisé «Big data : Gestion et analyse des données massives» et du Certificat d’Etudes Spécialisées «Data Scientist».

Course Staff Image #1

Pierre Senellart

Professeur dans l'équipe DBWeb de Télécom ParisTech. Il est un ancien élève de l'École normale supérieure. Il est le directeur de l'information du Journal of the ACM. Ses intérêts de recherche se concentrent sur les aspects pratiques et théoriques de la gestion de données du Web, en particulier le crawl et l'archivage du Web, l'extraction d'informations depuis le Web, la gestion de l'incertitude, la fouille du Web et l'interrogation sous contraintes d'accès. Il est responsable du Certificat d’Etudes Spécialisées «Data Scientist».

Course Staff Image #2

Anne Sabourin

Enseignant-chercheur au département Traitement du Signal et de l'Image de Télécom ParisTech. Ses recherches portent sur l'apprentissage statistique et les méthodes bayésiennes, en particulier pour l'analyse des valeurs extrêmes et la détection d'anomalies.

Course Staff Image #2

Joseph Salmon

Enseignant-chercheur au département Traitement du Signal et de l'Image de Télécom ParisTech. Il est spécialisé en traitement statistique des images et en apprentissage statistique. Ses recherches portent sur la création et l'étude d'algorithmes pour le traitement de données en grande dimension.

Course Staff Image #2

Alexandre Gramfort

Enseignant-chercheur au département Traitement du Signal et de l'Image de Telecom ParisTech. Ses recherches portent sur le traitement du signal, l'apprentissage statistique et le calcul scientifique avec pour application principale la modélisation et l'analyse de données en neurosciences. Il est un des principaux contributeurs du projet logiciel open source Scikit-Learn qui est la librairie standard pour l'apprentissage statistique en Python.

Course Staff Image #2

Ons Jelassi

Enseignante à la formation continue de Télécom ParisTech, dans le domaine de la métrologie et des performances des réseaux. Elle est coordonnatrice de ce MOOC.

MOOCS recommandés

Conditions d'utilisation

Pour le cours

Licence Creative Commons BY NC ND: l'utilisateur doit mentionner le nom d'auteur, il peut exploiter l'oeuvre sauf dans un contexte commercial, il ne peut pas créer une oeuvre dérivée de l'oeuvre originale.

Pour le contenu produit par les internautes

Licence restrictive: votre production relève de votre proprieté intellectuelle et ne peut donc pas être réutilisée.