
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 1 - Sequence 4: Functions

Defining Functions

I Global definition of a function with one argument :
let f x = exp

I Local definition of a function with one argument :
let f x = exp1 in exp2

I Scoping rules as before (sequence 3) : local definitions hide more global ones
I Application of function named f to expression e: f e
I Parenthesis indicate structure of expressions

2

Fonction Definition and Application I
let f x = x+1;; (∗ global definition ∗)
val f : int -> int = <fun>
f 17;;
- : int = 18

let g y = 2*y (∗ local definition ∗)
in g 42;;
- : int = 84

f f 1;;
Characters 1-2:

f f 1;;
^

Error: This function has type int -> int
It is applied to too many arguments; maybe you forgot a ‘;’.

3

Fonction Definition and Application II

(f f) 1;;
Characters 4-5:

(f f) 1;;
^

Error: This expression has type int -> int
but an expression was expected of type int

f (f 1);;
- : int = 3

4

Lexical Scoping

Lexical Scoping: identifier used in the definition of a function refers to the identifier
visible at the moment of function definition

Dynamic Scoping: . . . visible at the moment of function invocation

5

Lexical Scoping I
(∗ with local definitions ∗)
let f x = x+1 in
let g y = f (f y) in
let f x = 2*x in
g 5;;
Characters 71-72:

let f x = 2*x in
^

Warning 26: unused variable f.
- : int = 7

(∗ with global definitions ∗)
let f x = x+1;;
val f : int -> int = <fun>

6

Lexical Scoping II

let g y = f (f y);;
val g : int -> int = <fun>
let f x = 2*x;;
val f : int -> int = <fun>
g 5;;
- : int = 7

7

Identifiers are not Variables

I An identifier may be hidden by a new definition for the same name
I Do not confuse with “changing the value of a variable”
I Static binding can give you indirect access to an otherwise hidden identifier

8

Redefinition is not Assignment I
let a = 1;;
val a : int = 1

let f x = x + a;;
val f : int -> int = <fun>

f 2;;
- : int = 3

let a = 73;;
val a : int = 73

f 2;;
- : int = 3

9

