
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 2: Constructing and Observing Records

Naming components

I The role of each component of a tuple is determined by its position.
I It is easy to use a wrong index.
I What if we could name components?

2

2D points as records I

type point2D = { x : int; y : int };;
type point2D = { x : int; y : int; }
let origin = { x = 0; y = 0 };;
val origin : point2D = {x = 0; y = 0}
let from_tuple (x, y) = { x; y };;
val from_tuple : int * int -> point2D = <fun>
let a : point2D = from_tuple (4, 2);;
val a : point2D = {x = 4; y = 2}
let b : point2D = from_tuple (10, 5);;
val b : point2D = {x = 10; y = 5}

3

2D points as records II
type box = {

left_upper_corner : point2D;
right_lower_corner : point2D;

};;
type box = {

left_upper_corner : point2D;
right_lower_corner : point2D;

}
let the_box = { left_upper_corner = a; right_lower_corner = b };;
val the_box : box =

{left_upper_corner = {x = 4; y = 2};
right_lower_corner = {x = 10; y = 5}}

let get_min_x { left_upper_corner = { x } } = x;;
val get_min_x : box -> int = <fun>

4

Syntax to declare a record type

I Contrary to tuples, record types must be declared.
I To declare a record type:

type some_type_identifier =
{ field_name : some_type; ...; field_name : some_type }

I All field names must be distinct.
I (And preferably unused in other record types.)

5

Syntax to construct a record

I To construct a record:

{ field_name = some_expression; ...; field_name = some_expression }

6

Syntax to observe a record

I To observe a specific field:
some_expression.field_name

I To observe several fields of a record, one can use record patterns:
{ field_name = some_pattern; ...; field_name = some_pattern }

I (A record pattern may not mention all the record fields.)

7

In the machine

Program Machine

let p = {
 x = 1; y = 2; z = 3
}

1 2 3

let q = {
 b = p;
 s = 0
}

0

I A record is represented by a heap-allocated block.
I A record is represented exactly as a tuple.

8

Pitfalls: Typo in a field name

I Using type declaration, the compiler detects typo in a field identifier.

9

Typo in a field name I

type point2D = { x : int; y : int };;
type point2D = { x : int; y : int; }
let p = { x = 42; z = 3 };;
Characters 18-19:

let p = { x = 42; z = 3 };;
^

Error: Unbound record field z

10

Pitfalls: Missing field

I When constructing a record, all fields must be defined.

11

A field is missing I

type point2D = { x : int; y : int };;
type point2D = { x : int; y : int; }
let oups = { x = 0 };;
Characters 11-20:

let oups = { x = 0 };;
^^^^^^^^^

Error: Some record fields are undefined: y

12

Pitfalls: Ill-typed field definition

I The value of each field must be compatible with the field type as declared by the
record type definition.

13

A field is ill-typed I

type person = { name : string ; age : int };;
type person = { name : string; age : int; }
let luke = { name = "Skywalker"; age = "26" };;
Characters 39-43:

let luke = { name = "Skywalker"; age = "26" };;
^^^^

Error: This expression has type string but an expression was
expected of type

int

14

Pitfalls: Shadowing a field name

I The compiler does its best to disambiguate the usage of labels, but sometimes the
ambiguity cannot be fixed (and is probably not intended by the programmer).

15

Shared field names I

type a = { x : int; b : int; };;
type a = { x : int; b : int; }
type b = { y : int; c : int; };;
type b = { y : int; c : int; }
{ x = 0; b = 2 };;
- : a = {x = 0; b = 2}
type t = { x : bool };;
type t = { x : bool; }
type u = { x : int };;
type u = { x : int; }

16

Shared field names II

{ x = true };;
Characters 6-10:

{ x = true };;
^^^^

Error: This expression has type bool but an expression was expected
of type

int

17

